Search results for "Climate Action"

showing 10 items of 2410 documents

Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake

2007

[1] We studied the oxidation and efflux of methane (CH4) in a small, polyhumic lake, Mekkojarvi (southern Finland), during 6 weeks in autumn when the stability of the water mass first weakened, temporarily restabilized, and finally mixed completely. During the summer stratification period, CH4 had accumulated in the anoxic hypolimnion to high concentrations (>150 mmol m−3). Gradual mixing of the water column during the autumn allowed access to both oxygen and CH4 by aerobic methane-oxidizing bacteria (MOB) deeper in the water column. Thus the bulk (∼83–88%) of the CH4 accumulated in the hypolimnion was subsequently consumed by MOB while only 12–17% was lost from the lake to the atmosphere a…

0106 biological sciencesAtmospheric ScienceWater mass010504 meteorology & atmospheric sciencesSoil ScienceAquatic ScienceOceanography01 natural sciencesMethanechemistry.chemical_compoundWater columnIsotope fractionationGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)0105 earth and related environmental sciencesEarth-Surface ProcessesWater Science and TechnologyHydrologyEcologyChemistry010604 marine biology & hydrobiologyPaleontologyForestryAnoxic watersGeophysics13. Climate actionSpace and Planetary ScienceIsotopes of carbonEnvironmental chemistryAnaerobic oxidation of methaneHypolimnionJournal of Geophysical Research
researchProduct

Carbon use efficiency variability from MODIS data

2017

[EN] Carbon use efficiency (CUE) describes how efficiently plants incorporate the carbon fixed during photosynthesis into biomass gain and can be calculated as the ratio between net primary production (NPP) and gross primary production (GPP). In this work, annual CUE has been obtained from annual GPP and NPP MODIS products for the peninsular Spain study area throughout eight years. CUE is spatially and temporally analyzed in terms of the vegetation type and annual precipitation and annual average air temperature. Results show that dense vegetation areas with moderate to high levels of precipitation present lower CUE values, whereas more arid areas present the highest CUE values. However, th…

NPP010504 meteorology & atmospheric sciencesGeography Planning and Development0211 other engineering and technologies02 engineering and technologyAtmospheric sciences01 natural sciencesVegetation typeEarth and Planetary Sciences (miscellaneous)EcosystemPrecipitationCarbon use efficiency (CUE)021101 geological & geomatics engineering0105 earth and related environmental sciencesBiomass (ecology)EcologyPrimary productionVegetation15. Life on landAridEficiencia en el uso del carbono (CUE)GeographyMODIS13. Climate actionSpatial variabilityGPP
researchProduct

Impacts of Varying Concentrations of Cloud Condensation Nuclei on Deep Convective Cloud Updrafts—A Multimodel Assessment

2021

AbstractThis study presents results from a model intercomparison project, focusing on the range of responses in deep convective cloud updrafts to varying cloud condensation nuclei (CCN) concentrations among seven state-of-the-art cloud-resolving models. Simulations of scattered convective clouds near Houston, Texas, are conducted, after being initialized with both relatively low and high CCN concentrations. Deep convective updrafts are identified, and trends in the updraft intensity and frequency are assessed. The factors contributing to the vertical velocity tendencies are examined to identify the physical processes associated with the CCN-induced updraft changes. The models show several c…

Convection[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric ScienceBuoyancy010504 meteorology & atmospheric sciencesPerturbation (astronomy)engineering.materialAtmospheric sciences01 natural sciences010305 fluids & plasmasTroposphere13. Climate action0103 physical sciencesConvective cloudengineeringCloud condensation nucleiEnvironmental scienceIntensity (heat transfer)Pressure gradient0105 earth and related environmental sciences
researchProduct

Characterisation of the magmatic signature in gas emissions from Turrialba Volcano, Costa Rica

2014

The equilibrium composition of volcanic gases with their magma is often overprinted by interaction with a shallow hydrothermal system. Identifying the magmatic signature of volcanic gases is critical to relate their composition to properties of the magma (temperature, fO2, gas-melt segregation depth). We report measurements of the chemical composition and flux of the major gas species emitted from Turrialba Volcano during March 2013. Measurements were made of two vents in the summit region, one of which opened in 2010 and the other in 2012. We determined an average SO2 flux of 5.2 ± 1.9 kg s-1 using scanning ultraviolet spectroscopy, and molar proportions of H2O, CO2, SO2, HCl, CO and H2 ga…

010504 meteorology & atmospheric sciencesStratigraphyChemical compositionContinuous emissionSoil ScienceMineralogyVolcanoe010502 geochemistry & geophysics01 natural sciencesHydrothermal circulationVolcanic GasesHydrothermal systemFlux (metallurgy)lcsh:StratigraphyMagmatic signaturesGeochemistry and PetrologyUltraviolet spectroscopyeventGas compositionFourier transform infrared spectroscopyChemical compositionlcsh:QE640-6990105 earth and related environmental sciencesEarth-Surface Processesevent.disaster_typegeographygeography.geographical_feature_categorylcsh:QE1-996.5Fourier transform infrared spectrometryPaleontologyFourier transform infrared spectroscopyGeologyChemical signatureGas-sensing systemlcsh:GeologyGeophysicsVolcanoCarbon dioxideSulfur dioxide13. Climate actionEquilibrium compositionMagmaCarbon dioxide; Fourier transform infrared spectroscopy; Sulfur dioxide; Ultraviolet spectroscopy; Volcanoes; Chemical compositions; Chemical signatures; Continuous emission; Equilibrium compositions; Fourier transform infrared spectrometry; Gas-sensing systems; Hydrothermal system; Magmatic signaturesGeology
researchProduct

Long-term optical and X-ray variability of the Be/X-ray binary H 1145-619: Discovery of an ongoing retrograde density wave

2017

Multiwavelength monitoring of Be/X-ray binaries is crucial to understand the mechanisms producing their outbursts. H 1145-619 is one of these systems, which has recently displayed X-ray activity. We investigate the correlation between the optical emission and the X-ray activity to predict the occurrence of new X-ray outbursts from the inferred state of the circumstellar disc. We have performed a multiwavelength study of H 1145-619 from 1973 to 2017 and present here a global analysis of its variability over the last 40 years. We have used optical spectra from the SAAO, SMARTS and SALT telescopes and optical photometry from INTEGRAL/OMC and ASAS. We also used X-ray observations from INTEGRAL/…

BrightnessBe starAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectX-ray binarystars: emission-lineFOS: Physical sciencesAstrophysics01 natural sciencesSpectral lineDensity wave theoryPhotometry (optics)X-rays: binariesstars: neutrontechniques: photometric0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsBeAstronomy and AstrophysicsLight curvestars: emission-line BeAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceSkyAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenatechniques: spectroscopicAstronomy & Astrophysics
researchProduct

Design and preparation of core-shell structured magnetic graphene oxide@MIL-101(Fe): Photocatalysis under shell to remove diazinon and atrazine pesti…

2020

Abstract A magnetically separable support with core-shell morphology comprising amine-functionalized Fe3O4 wrapped with graphene oxide (AFG) was successfully prepared and used to support MIL-101(Fe). The ternary AFG@MIL-101(Fe) composite was investigated as a photo-Fenton catalyst for the degradation of recalcitrant diazinon (DIZ) and atrazine (ATZ) pesticides. After 105 min visible light irradiation, the AFG@30MIL-101(Fe) photocatalyst achieved 100 ± 1% and 81 ± 1% photocatalytic degradation efficiency for DIZ and ATZ pollutants, respectively. The recorded data indicated superior photocatalytic ability of the nanocomposite as compared to AF@30MIL-101(Fe) and MIL-101(Fe) photocatalysts for …

NanocompositeRenewable Energy Sustainability and the EnvironmentChemistryGraphene020209 energyRadicalOxide02 engineering and technology[CHIM.CATA]Chemical Sciences/Catalysis021001 nanoscience & nanotechnologylaw.inventionCatalysischemistry.chemical_compoundAdsorption13. Climate actionlawOxidizing agent0202 electrical engineering electronic engineering information engineeringPhotocatalysisGeneral Materials Science0210 nano-technologyComputingMilieux_MISCELLANEOUSNuclear chemistry
researchProduct

The Gaia-ESO Survey: The origin and evolution of s-process elements

2018

Context. Several works have found an increase of the abundances of the s-process neutron-capture elements in the youngest Galactic stellar populations. These trends provide important constraints on stellar and Galactic evolution and they need to be confirmed with large and statistically significant samples of stars spanning wide age and distance intervals. Aims. We aim to trace the abundance patterns and the time evolution of five s-process elements - two belonging to the first peak, Y and Zr, and three belonging to the second peak, Ba, La, and Ce - using the Gaia-ESO IDR5 results for open clusters and disc stars. Methods. From the UVES spectra of cluster member stars, we determined the ave…

astro-ph.GAMetallicityFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGalaxy: diskAstronomi astrofysik och kosmologiAbundance (ecology)QB4600103 physical sciencesAstronomy Astrophysics and CosmologyAstrophysics::Solar and Stellar AstrophysicsDisc010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhysicsgeneral [Open clusters and associations][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsOpen clusters and associations: generalAstrophysics - Astrophysics of GalaxiesStarsAbundances [Galaxy][SDU]Sciences of the Universe [physics]13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Galaxy: abundancesAstrophysics::Earth and Planetary AstrophysicsDisk [Galaxy]s-processOpen cluster
researchProduct

Biofuel blending reduces particle emissions from aircraft engines at cruise conditions.

2017

Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate1. The magnitude of air-traffic-related aerosol–cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuel…

Greenhouse Effect010504 meteorology & atmospheric sciencesMeteorologyParticle numberAircraftAviation020209 energyCruiseClimate change02 engineering and technologyJet fuelAtmospheric sciences7. Clean energy01 natural sciencesGlobal WarmingArticle0202 electrical engineering electronic engineering information engineeringWolkenphysikAerosol0105 earth and related environmental sciencesVehicle EmissionsAerosolsMultidisciplinarybusiness.industryAtmosphärische SpurenstoffeAerosol13. Climate actionBiofuelBiofuelsaviationEnvironmental sciencebiofuelCirrusParticulate Matterbusinesscontraiö cirrusNature
researchProduct

Agents of change: Women in top management and corporate environmental performance

2020

International audience; We analyze the influence of gender diversity in top management on the environmental performance of French firms. Consistent with gender socialization theory, which posits that women are raised from childhood to be more nurturing and compassionate for others, we find that firms with more women in top management exhibit higher environmental performance. This result extends those already reported in the literature regarding the effect of gender diversity at board level. We also show that women in top management are associated with several key indicators such as development of eco‐friendly products and commitment to resource reduction. Furthermore, we find that the influ…

Gender diversityPerformanceStrategy and ManagementManagement Monitoring Policy and LawDevelopment0603 philosophy ethics and religionResource (project management)5. Gender equalitySustainable development11. Sustainability0502 economics and businessTop managementCSRGender diversitySustainable development05 social sciencesSocialization06 humanities and the artsRole theory[SHS.ECO]Humanities and Social Sciences/Economics and Finance13. Climate actionCorporate social responsibility[SHS.GESTION]Humanities and Social Sciences/Business administrationDemographic economicsTop management060301 applied ethicsBusiness050203 business & management
researchProduct

Formaldehyde: Catalytic Oxidation as a Promising Soft Way of Elimination

2013

International audience; Compared to other molecules such as benzene, toluene, xylene, and chlorinated compounds, the catalytic oxidation of formaldehyde has been studied rarely. However, standards for the emission level of this pollutant will become more restrictive because of its extreme toxicity even at very low concentrations in air. As a consequence, the development of a highly efficient process for its selective elimination is needed. Complete catalytic oxidation of formaldehyde into CO2 and H2O using noble-metal-based catalysts is a promising method to convert this pollutant at room temperature, making this process energetically attractive from an industrial point of view. However, th…

General Chemical EngineeringFormaldehyde02 engineering and technologyengineering.material010402 general chemistryHeterogeneous catalysis01 natural sciences7. Clean energyCatalysisCatalysis[ CHIM.CATA ] Chemical Sciences/Catalysischemistry.chemical_compound[ CHIM.ORGA ] Chemical Sciences/Organic chemistryFormaldehyde[ CHIM.OTHE ] Chemical Sciences/OtherEnvironmental ChemistryOrganic chemistryGeneral Materials SciencePollutantAir Pollutants[CHIM.ORGA]Chemical Sciences/Organic chemistryXylene[CHIM.CATA]Chemical Sciences/Catalysis021001 nanoscience & nanotechnologyToluene0104 chemical sciencesGeneral EnergychemistryCatalytic oxidation13. Climate actionAir Pollution IndoorengineeringNoble metal[CHIM.OTHE]Chemical Sciences/Other0210 nano-technologyOxidation-ReductionChemSusChem
researchProduct